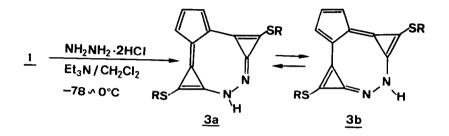
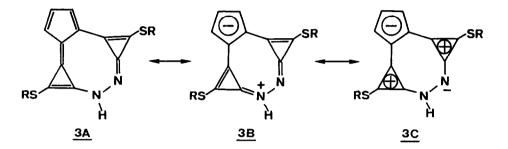

A NOVEL HETEROCYCLE COMPOSED OF CALICENE AND CYCLOPROPENONE HYDRAZONE UNITS -----3,8-BIS(t-BUTYLTHIO)-5,6-DIAZATETRACYCLO-[8,3,0,0^{2,4},0^{7,9}]TRIDECA-1,3,6,8,10,12-HEXAENE

Zen-ichi Yoshida,^{*} Mitsuhiro Shibata and Toyonari Sugimoto Department of Synthetic Chemistry, Kyoto University, Yoshida, Kyoto 606, Japan

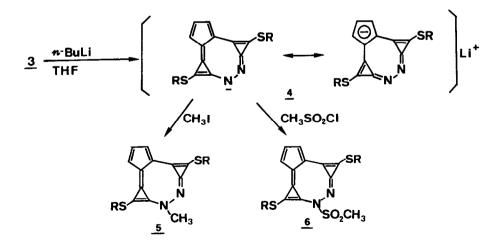
<u>Abstract:</u> The titled compound (<u>3</u>) is synthesized by the reaction of 1,2-bis(dithiocyclopropenylio)cyclopentadienide with hydrazine. The ¹H- and ¹³C-NMR spectra suggest significant contribution of a novel polarized structure (<u>3B</u>) compared with a peripheral 14π conjugation structure (<u>3A</u>). Reaction features of <u>3</u> are also examined.


Very recently we reported synthesis of a novel doubly cross-conjugated cation, 1,2-bis(dithiocyclopropenylio)cyclopentadienide (<u>1</u>) from 5,6-bis-(*t*-butylthio)calicene and 1,2-bis(*t*-butylthio)-3,3-dichlorocyclopropene.¹ Since <u>1</u> possesses alkylthio groups of good leaving nature, it might be possible to synthesize new polycyclic π -conjugated systems by the reaction of <u>1</u> with appropriate nucleophiles. As an example of such sort, we succeeded in synthesis of a novel polycyclic aromatic system having peripheral 16 π electrons, 3,11-bis(*t*-butylthio)cyclic bicalicene (<u>2</u>)^{2,3} from <u>1</u> and cyclopentadienide. This communication describes another example, that is,

4223


synthesis of a novel polycyclic cross-conjugated heterocycle, the titled compound (<u>3</u>) which is composed of a calicene (8π) unit and a cyclopropenone hydrazone (6π) unit, and possesses a possible peripheral 14π conjugation structure.

The titled compound can be synthesized as shown below. Thus, reaction



of 1 with an equimolar amount of hydrazine dihydrochloride in dichloromethane in the presence of triethylamine at -78°C afforded 3 as pale yellow solid: mp 80-82°C (43% yield); IR (KBr) 1840, 1522 cm⁻¹; UV (CH₂Cl₂) λ_{max} (log_c) 242 (4.31), 280 (4.04), 340 (sh, 4.08), 374 nm (4.28); ¹H-NMR (CDCl₃, ppm) § 7.20 (d, 2H, $H_{11,13}$, J=3.6 Hz), 6.94 (t, 1H, H_{12} , J=3.6 Hz), 1.70 (s, 18H, tBu)⁴; ¹³C-NMR (CDCl₃, ppm)δ 129.1 (C_{11,13}), 122.2 (C₁₂), 121.3 (C_{3,8}), 115.8 $(C_{2,9}), 114.2 \ (C_{4,7}), 107.7 \ (C_{1,10}), 47.9 \ (\underline{C}(CH_3)_3), 31.5 \ (C(\underline{CH}_3)_3); \text{ MS calcd}$ for C₁₉H₂₂N₂S₂: m/e (M⁺) 342.1225, found: 342.1240. The facts that the H₁₁ and H_{13} protons are observed as magnetically equivalent one in the ¹H-NMR spectrum, and that the ¹³C-NMR spectrum consists of eight carbon signals, clearly indicate that $\underline{3}$ is in a fast equilibrium between two tautomers, $\underline{3a}$ Interestingly, the ¹H-signals of cyclopentadienide part of 3 and 3b. appear at almost the same region to those of the thione derivative of 1 which is an acyclic system with an isoelectronic $\pi\text{-structure}$ to $\underline{3}$ (§ 7.22 \sim 6.50 ppm)^{3,5}, indicating that the former compound does not possess a diamagnetic ring current due to peripheral 14π structure. The ¹³C-signals of cyclopentadienyl part of $\underline{3}$ appear at the similar region to those of 2,⁶ suggesting the contribution of a polar structure.² While, the ¹³C-signals of cyclopropenyl ring are observed at the considerably higher magnetic field compared with those of $\underline{2}$, suggesting that $\underline{3B}$ rather than $\underline{3C}$ mainly

contributes in the polar structure of <u>3</u>. Consequently, the ground state of <u>3</u> is more suitably expressed by a novel polarized structure (<u>3B</u>)⁷ than by a peripheral 14π conjugation structure (<u>3A</u>). This contrasts dramatically with the stabilization in pyrazole where peripheral 6π conjugation structure involving a hydrazone moiety contributes dominantly to the ground state.

Treatment of <u>3</u> with *n*-butyllithium at room temperature gave the corresponding lithium amide (<u>4</u>). The ¹H-NMR spectrum in d₈-THF shows signals at δ 6.80 (d, 2H), 6.50 (t, 1H) and 1.62 (s, 18H), from which a diamagnetic ring current due to peripheral 14_{π} conjugation is not expected, because the cyclopentadienyl protons appear at upper magnetic field by ca. 0.4 ppm compared with those of <u>3</u>. When <u>4</u> was allowed to react with iodomethane and methanesulfonyl chloride, N-methyl (<u>5</u>) and N-methanesulfonyl (<u>6</u>) substituted derivatives were obtained in respective yields of 40 and

35%,⁸ along with uncharacterized tarry materials derived by attack of nucleophiles toward the cyclopentadienyl ring.

References and Notes

- Z. Yoshida, M. Shibata, S. Kida, S. Miki, T. Sugimoto and S. Yoneda, Tetrahedron Lett., 25, 345 (1984).
- S. Yoneda, M. Shibata, S. Kida, Z. Yoshida, Y. Kai, K. Miki and N. Kasai, Angew. Chem., <u>96</u>, 75 (1984); Z. Yoshida, Pure Appl. Chem., <u>54</u>, 1059 (1982).
- 3. Z. Yoshida, M. Shibata, F. Iwasaki, S. Yoneda and T. Sugimoto, submitted to J. Am. Chem. Soc.
- It should be ascribed to fast tautomerism between <u>3a</u> and <u>3b</u> that N-H signal does not sharply appear.
- 5. The thione derivative of $\underline{1}$ was synthesized by the reaction of $\underline{1}$ with sodium bicarbonate in refluxing ethyl acetate in 54% yield.³
- 6. The NMR spectral data of $\underline{2}$ are as follows: ¹H-NMR (CDCl₃, ppm) δ 6.87 (d, 4H, H_{6,8,14,16}, J=3.8 Hz), 6.40 (t, 2H, H_{7,15}, J=3.8 Hz), 1.75 (s, 18H, tBu); ¹³C-NMR (CDCl₃, ppm) δ 135.9 (C_{2,4,10,12}), 128.2 (C_{3,11}), 127.5 (C_{6,8,14,16}), 123.0 (C_{7,15}), 109.0 (C_{1,5,9,13}), 48.0 (C(CH₃)₃), 31.6 (C(CH₃)₃).
- 7. The protonation of <u>3</u> with trifluoroacetic acid selectively occurred at the cyclopentadienyl ring to give the conjugate acid. The ¹H-NMR spectrum shows the signals at δ 7.49 (bs, 2H), 4.15 (bs, 2H) and 1.80 (s, 18H, *t*Bu).
- 8. <u>5</u>: pale yellow crystals, mp 121-122°C(dec.); IR (KBr, cm⁻¹) 1840, 1532; ¹H-NMR (CDCl₃, ppm)& 7.15 (m, 2H), 6.93 (t, 1H), 3.90 (s, 3H, Me), 1.82 (s, 9H, tBu), 1.71 (s, 9H, tBu). <u>6</u>: pale yellow crystals, mp 117-119°C (dec.); IR (KBr, cm⁻¹) 1835, 1532; ¹H-NMR (CDCl₃, ppm)& 7.35 (dd, 1H), 7.22 (dd, 1H), 6.95 (t, 1H), 3.50 (s, 3H, Me), 1.82 (s, 9H, tBu), 1.73 (s, 9H, tBu).

(Received in Japan 26 May 1984)